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Generalized variational principle for the time-dependent Hartree-Fock equations
for a Slater determinant

H.-J. Kull
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The time-dependent Hartree-Fock equations are derived from a variational principle for the generalN-body
action of a Slater determinant of single-electron orbitals. The variational principle generalizes commonly used
variational treatments based on reduced two-body actions. The self-consistent field equations are found to
contain time-dependent corrections to the standard mean-field interactions. Their physical significance is dis-
cussed and a time-dependent phase shift to the Slater determinant is obtained that properly accounts for the
total interaction energy in the mean-field approach.

PACS number~s!: 02.70.2c, 31.15.Ne, 31.15.Pf, 71.15.Fv
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I. INTRODUCTION

The time-dependent Hartree-Fock~TDHF! method de-
scribes the time evolution of a many-body system by
approximate set of self-consistent mean-field equations
single-particle wave functions. In the past, the tim
dependent generalization of the static Hartree-Fock~HF!
theory has been of particular interest for dynamical studie
nuclear reactions@1#, atomic collisions@2#, and multiphoton
ionization@3#. The calculation of single-particle TDHF wav
functions also has greatly stimulated research on assoc
numerical techniques@4#.

The TDHF approach commonly is based on a variatio
principle for the time-dependent Schro¨dinger equation along
with an approximation of the many-body wave function by
Slater determinant of single-particle wave functions. F
two-body interactions the action can be reduced to a t
body functional that provides the basis of previous var
tional approaches. A thorough discussion of this variatio
formulation has been given in Ref.@5#, which appears to be
the basis of many later applications of the method. A co
prehensive derivation of the standard TDHF model used
atomic physics can be found in Ref.@6#.

In the present work, we review and extend the variatio
formulation of the TDHF equations for a Slater determina
In contrast to previous work, the action is not reduced t
two-body functional. Instead, the completeN-body action is
minimized with respect to arbitrary variations of the sing
electron wave functions. In the following, all equations a
written in atomic units.

To illustrate the basic difference between these variatio
formulations, consider a single-electron Schro¨dinger equa-
tion

i
]c

]t
5@H01V~ t !#c ~1.1!

with a Hermitian HamiltonianH0 and an additional time-
dependent interaction potentialV(t). This equation can sim
ply be recovered from the variation of the action
PRE 611063-651X/2000/61~5!/5940~8!/$15.00
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S@c,c* #5E dtE d3r c* S H01V~ t !2 i
]

]t Dc ~1.2!

with respect toc* . On the other hand, if the wave function
assumed normalized to unity, the reduced action becom

S8@c,c* #5V~ t !1E dtE d3r c* ~H02 i ] t!c. ~1.3!

Variation of S8 with respect toc* yields again the Schro¨-
dinger equation~1.1!, however, without the potentialV(t).
This example clearly demonstrates that the variational fo
S and S8 are not equivalent. The above discrepancy can
removed by adding an orthonormality constraint to the act
S8

S95S81E dt m~ t !E d3r c* c ~1.4!

with a Lagrange multiplierm(t) at each timet. The variation
of S9 now yields,

i
]c

]t
5@H01m~ t !#c. ~1.5!

To obtain the correct resultm(t)5V(t), the Lagrange mul-
tiplier has to be determined in accordance with the comp
action by setting

S5S9. ~1.6!

From this example one can draw the following conclusio
Making use of the orthonormality property of the solution
the variations have to be constrained accordingly. If th
constraints are expressed by Lagrange multipliers, one
tains additional terms in the field equations which are
exactly the same kind as those dropped in the original va
tional principle. The Lagrange multipliers have to be chos
in such a way that the original variational principle is ree
tablished. The advantage of Lagrange multipliers consist
the fact that the variations can be taken for the reduced va
5940 ©2000 The American Physical Society
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tional principle in the same way as for the original unco
strained problem. On the other hand, using the original
tion for nonorthonormal wave functions, the subsequ
determination of Lagrange multipliers can be avoided. It
also noted that the role of Lagrange multipliers in the tim
independent Hartree-Fock theory has been discussed in
work by Koopmans@7# and by Slater@8#. A detailed com-
parison of our time-dependent results with this work is ma
in Sec. III.

Our basic purpose in this work is a systematic discuss
of the variational principle for the TDHF equations with o
thonormality constraints. We restrict attention to syste
that can be described by a single Slater determinant. Aft
brief statement of the variational principle in Sec. II A,
generalized set of TDHF equations is derived from
N-body action in Sec. II B and the conservation of the no
of the wave function in the TDHF approximation is demo
strated in this context. It is further shown that the solutio
of these equations can be chosen orthonormal and a s
evolution equations for orthonormal functions is derived
Sec. II C. These equations contain time-dependent par
eters that exactly correspond to the Lagrange multipliers
variational principle with orthonormality constraints pr
sented in Sec. II D. The physical significance of t
Lagrange multipliers is discussed in Sec. III. It is demo
strated that the standard TDHF equations without Lagra
multipliers can be obtained by a unitary transformation of
function system. The major result of this analysis is a c
rection to the Slater determinant by a time-dependent ph
factor that properly accounts for the mean interaction ene
between the particles.

II. N-ELECTRON SYSTEMS

We consider anN-electron system, whose Hamiltonia
takes the form

H~1, . . . ,N,t !5(
j

H (1)~ j ,t !1(
j ,k

H (2)~ j ,k!. ~2.1!

H (1)( j ,t) represents a generally time-dependent sing
particle Hamiltonian acting on the coordinates of particlj
and H (2)( j ,k) a pair-interaction Hamiltonian acting on th
coordinates of two particlesj andk. The sums are extende
over all electrons and over all pairs of electrons, respectiv
The coordinates of particlej include the spatial coordinatesr j
and a spin-quantum numberms j56 1

2 . For simplicity of no-
tation, we will use the abbreviations

j [~r j ,ms j!, E d j[(
ms j

E d3r j . ~2.2!

In accordance with the general principles of quantum m
chanics, the Hamiltonian is assumed to be Hermitian
symmetric with respect to an exchange of particles. M
specific properties of the Hamiltonian are not required for
present purposes. It is mentioned, however, that we
mainly interested in the interaction of atoms with tim
dependent laser fields@9#, where the Hamiltonian assume
the explicit form
-
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H (1)~ j ,t !52
1

2
D j1V~ j ,t !, ~2.3a!

H (2)~ j ,k!5H (2)~k, j !5
1

ur j2rku
. ~2.3b!

Here V( j ,t)5VA( j )1r j•E(t) includes the atomic potentia
VA( j ) and the time-dependent dipole interaction energy w
an external electric fieldE(t). The time evolution of the
exact N-particle wave function is governed by the tim
dependent Schro¨dinger equation

i
]

]t
c~1, . . . ,N,t !5H~1, . . . ,N,t !c~1, . . . ,N,t !.

~2.4!

A. Variational principle for the wave function

The time-dependent Schro¨dinger equation can be derive
from a well-known variational principle,

dS@c,c* #50, ~2.5!

where the actionS is defined as a functional of the functio
c and its complex conjugatec* by

S@c,c* #5~c,Lc! with L5H2 i
]

]t
. ~2.6!

Here and in the following we use the notation

~f,c!~s11, . . . ,N,t !

[)
j 51

s E d jf* ~1, . . . ,N,t !c~1, . . . ,N,t !,

~2.7a!

~f,c!~ t ![)
j 51

N E d jf* ~1, . . . ,N,t !c~1, . . . ,N,t !,

~2.7b!

~f,c![E dt~f,c!~ t !. ~2.7c!

The product~2.7a! is defined by the integration off* c over
a subspace ofs particles. The arguments of the brackets
dicate the remaining variables after integration. Fors5N
one obtains the usual scalar product~2.7b! in the N-particle
Hilbert space, which still depends on time. A further tim
integration of this scalar product, as defined in Eq.~2.7c!, is
required to form the action~2.6! for the time-dependen
Schrödinger equation. A corresponding notation will be us
for functions, depending only on the coordinates of one
two particles,

~f,c!~ t !5E dif* ~ i ,t !c~ i ,t !, ~2.8a!

~f,c!~ i ,t !5E d jf* ~ i , j ,t !c~ i , j ,t !. ~2.8b!
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The variations of the fieldsc andc* are assumed to vanis
on the boundary of the (3N11)-dimensional integration re
gion to avoid boundary terms from partial integrations. F
mal variation of the action~2.6! with respect to the functions
c* andc yields the Schro¨dinger equation and its adjoint,

Lc50, ~L 1c!* 50, ~2.9!

respectively. SinceL is Hermitian with respect to the scala
product in the (3N11)-dimensional space,

~f,L 1c!5~c,Lf!* 5~Lc,f!* 5~f,Lc!, ~2.10!

the adjoint equation can be dropped. The variational p
ciple therefore determines the solutions of the tim
dependent Schro¨dinger equation.

B. Variational principle for a single Slater determinant

The variational principle is advantageous for determin
approximate solutions of the Schro¨dinger equation for a
given set of trial functions. In the framework of the tim
dependent Hartree-Fock theory, theN-particle wave function
is approximated by a Slater determinant

cs5
1

AN!
(
p

sgn~p!)
j 51

N

up( j )~ j ,t ! ~2.11!

of single-electron orbitalsuk( j ,t). Without explicit notation,
the single-electron orbitals are understood as products
spatial orbital and a spin wave function. The subscriptk enu-
merates different functions and the argumentj different par-
ticles. The sum is extended over all permutationsp of the
ordered set 1, . . . ,N. The Slater determinant is complete
antisymmetric with respect to an exchange of particles
requiring that sgn(p)511 for even and sgn(p)521 for
odd permutations.

The summation over permutations can be performed
the left argument of Eq.~2.6! by noting that allN! permuta-
tions give rise to the same contribution. Due to the symme
H„p(1), . . . ,p(N),t…5H(1, . . . ,N,t) of the Hamiltonian,
one obtains

S@cs ,cs* #5AN! S )
j 51

N

uj~ j ,t !,LcsD . ~2.12!

In common treatments of the time-dependent Hartree-F
theory theN-particle functionalS is further reduced to a sum
of 1-particle and 2-particle functionals by assuming orth
normality of the functionsuj ( j ,t). The constraint imposed
on the variations by the orthonormality condition is n
glected. Here we depart from this procedure, by first cal
lating the variation of theN-particle functional according to
the exact variational principle and then applying the orth
normality condition. With the help of Eq.~2.10!, variation
with respect touj ( j ,t)* yields,

dS@cs ,cs* #5AN!(
i 51

N S dui~ i ,t !)
j Þ i

uj~ j ,t !,LcsD . ~2.13!

Considering arbitrary independent variationsduj ( j ,t)* , the
variational principle implies,
-

-
-

g
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-

-

S)
j Þ i

uj~ j ,t !,LcsD ~ i ,t !50, ~2.14!

where the integration is over the 3(N21)-dimensional sub-
space, excluding the time coordinate and the coordinate
electron i. In general, the Schro¨dinger equation will no
longer be satisfied in the wholeN-particle Hilbert space.
Only the projections on single-particle subspaces, given
Eq. ~2.14!, can be made to vanish with trial functions of th
form ~2.11!.

Using again Eq.~2.11! for the right argument in Eq.
~2.14!, one obtains the general form of the time-depend
Hartree-Fock equations,

(
p

sgn~p!S)
j Þ i

uj~ j ,t !,L)
j Þ i

up( j )~ j ,t ! D ~ i ,t !up( i )~ i ,t !50.

~2.15!

The set of equations fori 51, . . . ,N determines the time
evolution of the set of unknown functionsui( i ,t).

For quantum mechanical systems, the norm of the w
function has to be conserved in time. It is therefore essen
that the TDHF approximation fulfills a conservation law f
the norm of the wave function. This property can be gen
ally demonstrated by noting that

S cs ,i
]cs

]t D ~ t !5AN! S )
j 51

N

uj ,i
]cs

]t D ~ t !

5AN! S )
j 51

N

uj ,HcsD ~ t !

5~cs ,Hcs!~ t !, ~2.16!

where, in the second step, it has been assumed thatcs is a
solution of the TDHF equations~2.14!. Using this expression
and its complex conjugate, it follows that the norm of t
Slater determinant is conserved within the TDHF approxim
tion for a Hermitian HamiltonianH,

d

dt
~cs ,cs!~ t !5 i ~Hcs ,cs!~ t !2 i ~cs ,Hcs!~ t !50.

~2.17!

C. Orthonormal functions

The TDHF equations can be further simplified by noti
an ambiguity in the definition of the functionsuj . Under
arbitrary linear, in general time, and space dependent tr
formations,

ui85(
k

Aikuk ~2.18!

with the property that

detA51, ~2.19!

the Slater determinant,

cs85detuui8~ j !u5detA detuuk~ j !u5detuuk~ j !u5cs ~2.20!
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remains invariant. The transformed functionsui8 represent
the same physical state as the original functionsui . As a
consequence, the basic TDHF equations~2.14! remain form-
invariant under these transformations. Considering tim
dependent transformations only, it is possible to choose a
of orthonormal functionsUi , satisfying

~Ui ,U j !~ t !5d i j . ~2.21!

These areN2 equations for 2@N(N21)/2#1N5N2 real pa-
rameters of the Hermitian matrix (Ui ,U j ). The complex ma-
trix Aik contains 2N2 real parameters, which are sufficient
satisfyN2 orthonormalization conditions. The remainingN2

parameters ofAik correspond to arbitrary unitary transform
tions of the orthonormal system. If one of these paramete
fixed by the requirement~2.19!, one can still perform arbi-
trary unitary transformations with determinant 1, which for
the group SU(N) with N221 real parameters.

This analysis shows that the present TDHF equations
ply in the same form both to orthonormal and nonorthon
mal function systems. To obtain orthonormal solutionsUi
from the evolution equations~2.15! themselves, one there
fore has to explicitly impose the orthonormality conditio
~2.21! at each instant of time. To ensure that the orthon
mality condition remains valid in the course of time evol
tion, it is useful to demand

i
d

dt
~Ui ,U j !~ t !5S Ui ,i

]U j

]t D ~ t !2S i
]Ui

]t
,U j D ~ t !50.

~2.22!

For orthonormal functions, the sum over permutations
Eq. ~2.15! can easily be evaluated by noting that mo
bracket terms vanish. Specifically, the following identiti
hold,

S)
j Þ i

U j~ j !,)
j Þ i

Up( j )~ j ! D ~ t !5)
j Þ i

dp( j ) j , ~2.23a!

S )
j Þ i ,k

U j~ j !, )
j Þ i ,k

Up( j )~ j ! D ~ t !5 )
j Þ i ,k

dp( j ) j ,

~2.23b!

S )
j Þ i ,k,l

U j~ j !, )
j Þ i ,k,l

Up( j )~ j ! D ~ t !5 )
j Þ i ,k,l

dp( j ) j .

~2.23c!

In other words, the only nonvanishing permutations are th
that permute only those particles excluded from the prod
states in Eq.~2.23!. Applying this property of the brackets t
the contributions from the HamiltonianH (1), one finds,

(
p

sgn~p!S)
j Þ i

U j~ j ,t !,(
k

H (1)~k,t !

3)
j Þ i

Up( j )~ j ,t ! D ~ i ,t !Up( i )~ i ,t !

5H (1)~ i ,t !Ui~ i ,t !1(
kÞ i

(
p8

sgn~p8!~Uk ,H (1)

3Up8(k)!~ t !Up8( i )~ i ,t !, ~2.24!
-
et

is

p-
-

r-

n
t

e
ct

wherep8 refers to the two possible permutations of the sei,
k. Corresponding contributions are obtained from the ti
derivative,

(
p

sgn~p!S )
j Þ i

U j~ j ,t !,
]

]t )
j Þ i

Up( j )~ j ,t ! D ~ i ,t !Up( i )~ i ,t !

5
]

]t
Ui~ i ,t !1(

kÞ i
(
p8

sgn~p8!S Uk ,
]

]t

3Up8(k)D ~ t !Up8( i )~ i ,t !. ~2.25!

According to the derivation of Eq.~2.15!, the time derivative
in the first line also acts on the functionUp( i )( i ,t) outside
the bracket. In the following, however, this term has be
separated and the remaining time derivatives are restricte
functions inside the brackets.

Finally, the contributions arising fromH (2) can be divided
into two parts by writing

(
j ,k

H (2)~ j ,k!5(
kÞ i

H (2)~k,i !1 (
j ,k, j Þ i ,kÞ i

H (2)~ j ,k!.

~2.26!

The first part can be treated in the same manner asH (1),
depending only on the coordinates of one particle in the
tegration region. The second part yields

(
j ,k, j Þ i ,kÞ i

(
p9

sgn~p9!~U jUk ,H (2)

3Up9( j )Up9(k)!~ t !Up9( i )~ i !, ~2.27!

where the summation overp9 denotes the six possible pe
mutations of the seti , j ,k.

To simplify notation, it is convenient to introduce the fo
lowing definitions,

F~ j ,t !5H (1)~ j ,t !2 i
]

]t
, ~2.28a!

Gkl~ i ,t !5„Uk~ j ,t !,H (2)~ i , j !Ul~ j ,t !…~ i ,t !, ~2.28b!

Fkl~ t !5„Uk~ j ,t !,F~ j ,t !Ul~ j ,t !…~ t !, ~2.28c!

Mi j ,kl~ t !5„Ui~ i ,t !U j~ j ,t !,H (2)~ i , j !Uk~ i ,t !Ul~ j ,t !…~ t !.

~2.28d!

F( i ,t) andGkl( i ,t) are time-dependent Hermitian operato
acting on the coordinates of particlei. The Hermiticity prop-
erty of these operators is expressed by

Flk~ t !5Fkl* ~ t !, Mkl,i j ~ t !5Mi j ,kl* ~ t !. ~2.29!

It follows from the Hermiticity ofH (1) andH (2) and from the
orthonormalization condition~2.22!. For later use we will
also define an antisymmetrized matrix

Mi j ,$kl%5Mi j ,kl2Mi j ,lk ~2.30!

with the properties,
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Mkl,$ i j %5Mi j ,$kl%* , Mi j ,$kl%5M ji ,$ lk% ,
~2.31!

Mii ,$kl%5Mi j ,$kk%50.

The latter follow immediately from the Hermiticity and sym
metry of H2 and the antisymmetry of Eq.~2.30!, respec-
tively.

Using Eqs.~2.24!, ~2.25!, ~2.27!, and ~2.28! the time-
dependent Hartree-Fock equations~2.15! can be rewritten in
the form

F~ i ,t !Ui~ i ,t !1(
j Þ i

(
p8

sgn~p8!@F j p8( j )~ t !1Gj p8( j )~ i ,t !#

3Up8( i )~ i ,t !1 (
j ,k, j Þ i ,kÞ i

(
p9

sgn~p9!

3M jk,p9( j )p9(k)~ t !Up9( i )~ i ,t !50. ~2.32!

The first term represents the one-electron Schro¨dinger equa-
he
y
o
at

o

ith

of

ve

m

tion for electron i. The second term contains the avera
interactionGj j of electroni with electronj and a correspond
ing exchange contributionGji . These terms agree with th
standard TDHF equations derived from the reduced tw
body action. In addition, Eq.~2.32! includes time-dependen
energy corrections for particlei due to changes in the single
electron energiesF j j (t) and interaction energiesM jk, jk(t) of
the remaining particles. Note that the last term, contain
the energiesM jk, jk(t), is only present when the system co
sists of more than two particles.

As shown in the Appendix, the contributions from th
various permutations in Eq.~2.32! can be rearranged in th
form

FUi1(
j

Gj j Ui2Gji U j5(
j

m j i U j ~2.33!

with the time-dependent coefficients
m j i ~ t !5H 2 (
j , j Þ i

F j j 2(
j ,k

M jk,$ jk%1 (
j , j Þ i

M i j ,$ i j % for i 5 j ,

F ji 1(
k

M jk,$ ik% for iÞ j .

~2.34!
se
ria-

ct

e-
The standard TDHF equations correspond to the case w
m i j 50. In Sec. III, it will be shown that this form actuall
can be obtained by a unitary transformation of the spin
bitals with a time-dependent phase correction to the Sl
determinant. In the next section an alternative derivation
Eq. ~2.33! will be given, showing that the coefficientsm i j (t)
are the Lagrange multipliers of a variational principle w
orthonormality constraints.

D. Variational principle with orthonormality constraints

Since the spin orbitals can always be chosen orthonorm
it is sufficient to perform variations within the subset
functions satisfying the orthonormality constraint~2.21!. Us-
ing the method of Lagrange multipliers, this can be achie
by a variation of the modified action,

S̃5S2E dt(
i , j

$~Ui ,U j !~ t !2d i j %m j i ~ t !, ~2.35!

with

S5E dt(
i

Fii 1(
i , j

M i j ,$ i j % . ~2.36!

The reduced action~2.36! is obtained by using Eq.~2.21! in
Eq. ~2.12!. Lagrange multipliersm i j (t) have been introduced
for each constraint at each timet. Since (Ui ,U j )(t) is Her-
mitian, the matrix of the Lagrange multipliers has the sa
property,m i j (t)5m j i* (t). From the variational principledS̃
re

r-
er
f

al,

d

e

50 with respect to variations of the functionsUi* one im-
mediately obtains the TDHF equations in the form

FUi1(
j

Gj j Ui2Gji U j5(
j

m j i U j . ~2.37!

Taking now the projection on a functionUk , the
Lagrange multipliers can be explicitly expressed as,

mki5Fki1(
j

Mk j ,$ i j % . ~2.38!

To eliminate the Lagrange multipliers, one has to impo
conditions on these matrix elements from the complete va
tional principle. From the wave functionc and the Schro¨-
dinger operatorL, one can only form a single scalar produ
that contains the matrix elements of Eq.~2.38!,

~c,Lc!~ t !5~cs ,Lcs!~ t !5(
i

Fii ~ t !1(
i , j

M i j ,$ i j %~ t !50.

~2.39!

This identity can be viewed as a condition on the tim
dependent single-particle energies

Ei[S Ui ,i
]

]t
Ui D ~ t ! ~2.40!

defined by the TDHF orbitals. Using Eq.~2.28a! in Eq.
~2.39! it follows that the sum
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(
i

Ei5(
i

~Ui ,H (1)Ui !~ t !1(
i , j

M jk,$ jk%5~cs ,Hcs!~ t !

~2.41!

has to be equal to the expectation value of the energy in
quantum statecs .

This relationship determines the trace of the matrixm i j as,

Tr$m%5(
i

Fii 1(
i j

M i j ,$ i j %5(
j ,k

M jk,$ jk% . ~2.42!

The remainingN221 parameters from the Hermitian matr
m i j can be arbitrarily chosen. In particular, the full set
TDHF equations~2.33! imposes no conditions on the of
diagonal elements, as can be seen by comparing them
the identical expressions in Eq.~2.34!.

III. DISCUSSION OF RESULTS

In the present work we have considered the variatio
principle for the TDHF equations for a Slater determinant
has been shown that the variation of the completeN-body
action leads to additional time-dependent parameters in
standard TDHF equations for orthonormal spin orbita
These parameters agree with the Lagrange multipliers
variational principle with orthonormality constraints on th
spin orbitals. We now further discuss the significance of
Lagrange multipliers in the TDHF equations.

The Lagrange multipliersm i j form a Hermitian matrix
with N2 independent parameters. Since a unitary transfor
tion has just the same number of parameters, all Lagra
multipliers can be removed at each time by a time-depend
unitary transformation, which will lead to the standa
TDHF equations. We now demonstrate in detail the ex
tence of such a unitary transformation and calculate its
terminant, which is a complex number with unit magnitud
This determinant is required to obtain the correspond
transformation of the Slater determinant.

Consider a new set of spin-orbitalsUm8 related to the old
setUi by a time-dependent unitary transformationT,

Um8 5(
i

TimUi , Ui5(
m

Tmi
1 Um8 , ~3.1!

with

Tim5~Ui ,Um8 !~ t !, Tmi
1 5~Um8 ,Ui !~ t !5Tim* .

The corresponding transformation of the Lagrange multi
ers ~2.38! is given by

mnm8 5(
i j

Tni
1m i j Tjm2Tni

1d i j i
]

]t
Tjm . ~3.2!

If the transformation is time independent, the Lagrange m
tipliers transform as a tensor. However, for time-depend
transformations an additional term arises from the tim
derivative in the operatorF5H (1)2 i (]/]t). Requiring that
the transformed Lagrange multipliersmnm8 vanish,Tjm(t) has
to satisfy the evolution equation,
e

ith

l
t

he
.
a

e

a-
ge
nt

-
e-
.
g

-

l-
nt
-

i
]

]t
Tim~ t !5(

j
m i j ~ t !Tjm~ t !. ~3.3!

Suppose that the Lagrange multipliers have already been
moved at timetn . In a subsequent infinitesimal time interv
Dt the solution of Eq.~3.3! is given by the unitary operato

T~Dt !5e2 im(tn)Dt. ~3.4!

By repeated application of this procedure at subsequ
times tn5nDt, n51,2,3, . . . , one canobtain the unitary
transformation for a finite time interval in the form,

T~ t !5)
n

e2 im(tn)Dt. ~3.5!

The determinant of this transformation can be obtained
noting that

detB5e2 i Tr$A% ~3.6!

for any unitary operatorB5e2 iA @10#. This relationship
holds in the basis of eigenstates of the Hermitian operatoA
and it follows generally from the invariance of the trace a
the determinant with respect to unitary transformations. U
ing Eq. ~3.6! yields

detT~ t !5)
n

exp@2 i Tr$m~ tn!%Dtn#

5expF2 i E dt Tr$m~ t !%G
5expF2 i E dt(

j ,k
M jk,$ jk%G . ~3.7!

In the last step, the trace of the matrixm i j (t) has been ex-
pressed by the average interaction energy between all p
of particles according to Eq.~2.42!. Eliminating the
Lagrange multipliers by this set of basis functions, the TDH
equations assume their standard form

i
]

]t
Ui85H (1)Ui81(

j
Gj j8 Ui82Gji8 U j8 . ~3.8!

The matrix elementsGi j8 are defined by Eq.~2.28b! in terms
of the functionsUi8 . The Slater determinantcs for the physi-
cal wave function can be obtained from the Slater deter
nantcs8 of the solutionUi8 by the unitary transformation

cs5
1

detT
cs85expF i E dt(

j ,k
M jk,$ jk%Gcs8 . ~3.9!

This phase factor has to be included in the time-depend
solution of the wave function after the standard TDHF eq
tions have been solved.

The appearance of an additional phase can be simply
derstood by noting that the phase shift~3.9! corresponds to
an energy difference
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E82E5S cs8 ,i
]

]t
cs8D ~ t !2S cs ,i

]

]t
csD ~ t !5(

j ,k
M jk,$ jk%

~3.10!

between the energiesE8 and E calculated withcs8 and cs ,
respectively. The physical energy of the system is defined
the expectation value of the Hamiltonian with the wave fun
tion cs , yielding

E5S cs ,i
]

]t
csD ~ t !5~cs ,Hcs!~ t !

5(
i

~Ui ,H (1)Ui !~ t !1(
i , j

M i j ,$ i j % . ~3.11!

On the other hand, the energyE8 can be calculated as a su
of single-electron energies,

E85S cs8 ,i
]

]t
cs8D ~ t !5(

i
S Ui8 ,i

]

]t
Ui8D ~ t !, ~3.12!

which are given by the solution of the TDHF equations~3.8!
as,

Ei8[S Ui8 ,i
]

]t
Ui8D ~ t !5~Ui8 ,H (1)Ui8!~ t !1(

j
M i j ,$ i j % .

~3.13!

Inserting Eq.~3.13! into Eq. ~3.12!, it follows that the inter-
action energy is counted twice inE8. The double counting of
the interaction energy in the standard TDHF model is c
rected by the phase factor to the wave function in Eq.~3.9!.

It may also be of interest to compare the present res
with those of the time-independent Hartree-Fock theory fo
single Slater determinant. In the time-independent fram
work, the role of Lagrange multipliers has been discussed
Koopmans @7# and an extended discussion of the tim
independent theory can be found in the book of Slater@8#.
The time-independent HF equations can be obtained f
the present TDHF equations by considering a tim
independent Hamiltonian and assuming stationary states
the time dependence

i
]

]t
Ui5EiUi . ~3.14!

With this substitution, one obtains from Eq.~2.37! the HF
equations

H (1)Ui1(
j

Gj j Ui2Gji U j5 i
]

]t
Ui1(

j
m j i U j

5(
j

l j i U j , ~3.15!

where
y
-

-

ts
a
-
y

-

m
-
ith

l i j 5~Ui ,H (1)U j !1(
k

M ik,$ jk% . ~3.16!

The matrixl i j represents the matrix of Lagrange multiplie
in the time-independent theory introduced by Koopmans@7#.
In the work of Slater, these parameters have been defi
with the opposite sign@8#.

In the time-independent theory it is always possible
choose a set of functions that diagonalizel i j ,

(
j

l j i U j85Ei8Ui8 . ~3.17!

The specific set of functionsUi8 that diagonalizesl i j has
been called a characteristic system@7#. The unitary transfor-
mation introduced above in the time-dependent framewor
a generalization of this diagonalization procedure. In
time-independent case, the condition for settingm i j8 5l i j8
2Ei8d i j 50 agrees with Eq.~3.17!.

The condition~2.42! on the trace of the Lagrange mult
pliers assumes the time-independent form

Tr$m%5Tr$l%2(
i

Ei5(
i

Ei82Ei5E82E5(
i , j

M i j ,$ i j % ,

~3.18!

where the trace ofl has been evaluated without restrictio
by the set of functionsUi8 . The discrepancy between th
energiesE8 and E is well known in the time-independen
theory. In the present work we draw attention to the fact t
one has to take into account a corresponding phase chan
the wave function, which is particularly relevant in the tim
dependent context.

It is finally noted that the energiesEi8 in the standard form
of the HF equations have a physical meaning that is given
Koopmans’ theorem@7#. It states that the energy required
remove the electroni from the system without changing th
remaining orbitals is equal to2Ei8 . The energies of the
N-electron system and the (N21)-electron system are phys
cally well defined. It can easily be shown that their diffe
ence is given by expression~3.13!, which represents the
single-electron energy of electroni and the interaction en
ergy of electroni with all the other particles. Koopmans
theorem remains valid in the time-dependent case, if the
ergiesEi8(t) are defined by Eq.~3.13!.

IV. CONCLUSION

The TDHF theory for a Slater determinant of a
N-electron Coulomb system has been reviewed in the con
of a variational principle for theN-body action. It is found
that the Slater determinant calculated by standard TD
equations has to be corrected by a time-dependent phase
tor. This factor properly accounts for the mean interact
energy of the system, which otherwise would be calcula
twice by summing over single-particle energies. In princip
the phase correction to the wave function may be observa
e.g., by measurements of the polarizability of an atom in
superposition of quantum states.
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APPENDIX: COUPLING COEFFICIENTS

The coupling coefficientsm i j (t) in Eq. ~2.33! can be ob-
tained in the following way. Using the definition~2.30!, the
sum over the permutationsp9 in Eq. ~2.32! can be written as,

(
p9

sgn~p9!M jk,p9( j )p9(k)Up9( i )~ i !

5M jk,$ jk%Ui1M jk,$ki%U j1M jk,$ i j %Uk . ~A1!

Noting the properties~2.31!, the restricted sum of the firs
term overj andk can be evaluated as,
d-

ys

ys
ry

ft,
e

-
-

(
j ,k, j Þ i ,kÞ i

M jk,$ jk%

5(
j ,k

M jk,$ jk%~12d i j !~12d ik!

5(
j ,k

M jk,$ jk%2 (
k,i ,k

M ik,$ ik%2 (
j , j , i

M ji ,$ j i %

5(
j ,k

M jk,$ jk%2 (
j , j Þ i

M i j ,$ i j % . ~A2!

Together with the contributions from the identical permu
tion in the sum overp8, there follow the diagonal element
m i i (t) as given by Eq.~2.33!. The sum over the remaining
two terms in Eq.~A1! can be written as,

(
j ,k, j Þ i ,kÞ i

M jk,$ki%U j1M jk,$ i j %Uk

5 (
j ,k, j Þ i ,kÞ i

M jk,$ki%U j1 (
k, j , j Þ i ,kÞ i

Mk j ,$ ik%U j

5 (
j ,k, j Þ i

M jk,$ki%U j52(
j ,k

M jk,$ ik%U j . ~A3!

Together with the exchange contributions from the sum o
p8, one obtains the off-diagonal elementsm j i (t), iÞ j of Eq.
~2.33!.
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