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Generalized variational principle for the time-dependent Hartree-Fock equations
for a Slater determinant
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The time-dependent Hartree-Fock equations are derived from a variational principle for the gebedsy
action of a Slater determinant of single-electron orbitals. The variational principle generalizes commonly used
variational treatments based on reduced two-body actions. The self-consistent field equations are found to
contain time-dependent corrections to the standard mean-field interactions. Their physical significance is dis-
cussed and a time-dependent phase shift to the Slater determinant is obtained that properly accounts for the
total interaction energy in the mean-field approach.

PACS numbgs): 02.70—c, 31.15.Ne, 31.15.Pf, 71.15.Fv

I. INTRODUCTION

d
S[lﬂ,lﬁ*]:fdtf d3r y* H0+V(t)—iﬁ>zp (1.2

The time-dependent Hartree-Fo¢kDHF) method de-
scribes the time evolution of a many-body system by anwith respect taj* . On the other hand, if the wave function is

approximate set of self-consistent mean-field equations foissumed normalized to unity, the reduced action becomes,
single-particle wave functions. In the past, the time-

dependent generalization of the static Hartree-F@dk) , .
theory has been of particular interest for dynamical studies of ST, ‘/’*]:V(tHJ dtf dr y* (Ho—id)y. (1.3
nuclear reactiongl], atomic collisiong 2], and multiphoton .
ionization[3]. The calculation of single-particle TDHF wave Variation of S’ with respect toy* yields again the Schro
functions also has greatly stimulated research on associatéhger equatior(1.1), however, without the potentiaf(t).
numerical techniquelt]. This example clearly demonstrates that the variational forms
The TDHF approach commonly is based on a variationafs and S’ are not equivalent. The above discrepancy can be
principle for the time-dependent Schiinger equation along removed by adding an orthonormality constraint to the action
with an approximation of the many-body wave function by aS’
Slater determinant of single-particle wave functions. For
two-body interactions the_action can pe reducet_:l to a tv_vo- S,,:S,JFJ' dt,u('[)f d3r * (1.9
body functional that provides the basis of previous varia-
:g?&lgﬁggoﬁgzes é é?] tgi?/g;‘u?nh F? !{Stsa?ﬁrll?ghogpfglesa\r/: rtftt;%na\llvithﬁa Lagra}nge multipliejc(t) at each time. The variation
the basis of many later applications of the method. A com-Of S’ now yields,
prehensive derivation of the standard TDHF model used in o
atomic physics can be found in R¢6]. iE=[HO+ w(t) 1. 1.5
In the present work, we review and extend the variational
formulation of the TDHF equations fqr a Slater determinant.-l-0 obtain the correct resuft(t)=V(t), the Lagrange mul-
In contrast to previous work, the action is not reduced to
two-body functional. Instead, the complétebody action is
minimized with respect to arbitrary variations of the single-
electron wave functions. In the following, all equations are S=9". (1.6)
written in atomic units.
To illustrate the basic difference between these variationaFrom this example one can draw the following conclusions.
formulations, consider a single-electron Salinger equa- Making use of the orthonormality property of the solutions,

Riplier has to be determined in accordance with the complete
action by setting

tion the variations have to be constrained accordingly. If these
constraints are expressed by Lagrange multipliers, one ob-

Y tains additional terms in the field equations which are of
'E_[HOJFV(I)]‘/’ (1.9 exactly the same kind as those dropped in the original varia-

tional principle. The Lagrange multipliers have to be chosen
with a Hermitian HamiltonianH, and an additional time- in such a way that the original variational principle is rees-
dependent interaction potentid(t). This equation can sim- tablished. The advantage of Lagrange multipliers consists in
ply be recovered from the variation of the action the fact that the variations can be taken for the reduced varia-
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tional principle in the same way as for the original uncon- 1
strained problem. On the other hand, using the original ac- H®(j, )=~ >4+ V(.b), (2.39
tion for nonorthonormal wave functions, the subsequent
determination of Lagrange multipliers can be avoided. It is
also noted that the role of Lagrange multipliers in the time- HA(j,k)=H®(k,j)= ——
independent Hartree-Fock theory has been discussed in early |rJ — 1y
work by Koopmang7] and by Slatef8]. A detailed com-
parison of our time-dependent results with this work is mad
in Sec. lll.

Our basic purpose in this work is a systematic discussio

(2.3b

ereV(j,t)=Va(j)+r;-E(t) includes the atomic potential
A(j) and the time-dependent dipole interaction energy with
AN external electric fieldE(t). The time evolution of the

of the variational principle for the TDHF equations with or- exact I;I-pa;rtslclﬁmvnvave functtilon is governed by the time-
thonormality constraints. We restrict attention to systemsfjepen ent s¢ ger equation
that can be described by a single Slater determinant. After a

brief statement of the variational principle in Sec. Il A, a i— (1, ... NO=H(, ... NO@(L, ... Nt).
generalized set of TDHF equations is derived from the at

N-body action in Sec. Il B and the conservation of the norm 2.4
of the wave function in the TDHF approximation is demon-

strated in this context. It is further shown that the solutions A. Variational principle for the wave function

of these equations can be chosen orthonormal and a set of The time-dependent Schtinger equation can be derived
evolution equations for orthonormal functions is derived infrom a well-known variational principle

Sec. I C. These equations contain time-dependent param-
eters that exactly correspond to the Lagrange multipliers of a Sy, * 1=0, (2.5
variational principle with orthonormality constraints pre-
sented in Sec. IID. The physical significance of thewhere the actiorsis defined as a functional of the function
Lagrange multipliers is discussed in Sec. Ill. It is demon-¢ and its complex conjugatg* by
strated that the standard TDHF equations without Lagrange
multipliers can be obtained by a unitary transformation of the N . . d
function system. The major result of this analysis is a cor- Sl 1= (b L) with L=H—i—. (2.6
rection to the Slater determinant by a time-dependent phase
factor that properly accounts for the mean interaction energyere and in the following we use the notation
between the particles.
(d,)(s+1,...N;t)
Il. N-ELECTRON SYSTEMS

Ejﬂl djd*(1,... N,Hw(l, ... N,b),

We consider arN-electron system, whose Hamiltonian
takes the form

H(L ... NO=> HOG O+ HOG k). (2.1 N ,
( )= 2 HOGO+ 2 HOGK. - 22 (¢,w)<t>zjﬂlfdm*(l,...,N,t)w(l,...,N,n,

H®(j,t) represents a generally time-dependent single- (2.7
particle Hamiltonian acting on the coordinates of particle

and H®)(j k) a pair-interaction Hamiltonian acting on the (¢,¢/;)zf dt( ¢, ) (). (2.79
coordinates of two particlesandk. The sums are extended

over all electrons and over all pairs of electrons, respectivelyT
The coordinates of particignclude the spatial coordinates
and a spin-quantum numberg;= * 3. For simplicity of no-
tation, we will use the abbreviations

he product2.7g is defined by the integration @*  over

a subspace df particles. The arguments of the brackets in-

dicate the remaining variables after integration. BerN

one obtains the usual scalar prod(2f7b in the N-particle

Hilbert space, which still depends on time. A further time
C—(r , - 3, integration of this scalar product, as defined in Ej70, is
J=(rmsy), fdl_mzsj fd i 22 required to form the action2.6) for the time-dependent

Schralinger equation. A corresponding notation will be used

In accordance with the general principles of quantum mefor functions, depending only on the coordinates of one or

chanics, the Hamiltonian is assumed to be Hermitian an@Vo particles,

symmetric with respect to an exchange of particles. More

specific properties of the Hamiltonian are not required for the () (1) = f dig* (i, (i ), (2.89

present purposes. It is mentioned, however, that we are

mainly interested in the interaction of atoms with time-

dependent laser field®], where the Hamiltonian assumes . . . .
thepexplicit form A (¢.¢f)(l,t)=f djg*(i,j,t)¢(i,j,tb). (2.8b
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The variations of the fieldg and * are assumed to vanish

on the boundary of the (8+ 1)-dimensional integration re- (H u;(j -t).ﬁiﬂs)(i,t):O, (2.14
gion to avoid boundary terms from partial integrations. For- 7!
mal variation of the actiofi2.6) with respect to the functions

. where the integration is over the I8¢ 1)-dimensional sub-
¢* and ¢ yields the Schrdinger equation and its adjoint, 9 ¢1)

space, excluding the time coordinate and the coordinates of
L4=0, (L*y)*=0, 29 electroni. In 'ge_neral, the Schdmger' equqtlon will no
4 (L7 29 longer be satisfied in the wholl-particle Hilbert space.

respectively. Since& is Hermitian with respect to the scalar Only the projections on single-particle subspaces, given by

product in the (Bl+1)-dimensional space, Eq. (2.14), can be made to vanish with trial functions of the
form (2.11.
(b, L) =(h,LP)* =(Lp,p)*=(p,Lyp), (2.10 Using again Eq.(2.11) for the right argument in Eq.

o ) o ~ (2.14), one obtains the general form of the time-dependent
the adjoint equation can be dropped. The variational pringgrtree-Fock equations,

ciple therefore determines the solutions of the time-
dependent Schdinger equation. . . . _
> sgr(m) ,EI uju,t),ﬁj[ji Uniy(J21) | (i, D) Uiy (i, 1) =0.

B. Variational principle for a single Slater determinant (2.15

The variational principle is advantageous for determining ] ] ) )
approximate solutions of the Scliiager equation for a 1he set of equations for=1,... N determines the time
given set of trial functions. In the framework of the time- €volution of the set of unknown functions(i,t).
dependent Hartree-Fock theory, tReparticle wave function For quantum mechanical systems, the norm of the wave
is approximated by a Slater determinant function has to be conserved in time. It is therefore essential

that the TDHF approximation fulfills a conservation law for
1 N the norm of the wave function. This property can be gener-
dng > sgn 77)]1:[1 Un(y(i,t) (2.1)  ally demonstrated by noting that

N It
J1:[1uj,i ¢)(t)

. . . . - . ay
of single-electron orbitals(j,t). Without explicit notation, _S) - J/NI _’s
Ys.i—= | (=N g

the single-electron orbitals are understood as products of a
spatial orbital and a spin wave function. The subsdtiphu- N
merates different functions and the argumidifferent par- NN .

ticles. The sum is extended over all permutatien®f the NI 11:[1 uj,His | (1)
ordered set L .. ,N. The Slater determinant is completely

antisymmetric with respect to an exchange of particles by = (s, Hipo) (1), (2.16
requiring that sgnf)=+1 for even and sgnf)=—1 for ) . )
odd permutations. where, in the second step, it has been assumedythit a

The summation over permutations can be performed iolution of the TDHF equation.14). Using this expression
the left argument of Eq2.6) by noting that allN! permuta- ~ @nd its complex conjugate, it follows that the norm of the
tions give rise to the same contribution. Due to the symmetry>| &€ determinant is conserved within the TDHF approxima-
H(m(1), ... ,m(N),)=H(L, ... N,t) of the Hamiltonian, ton for a Hermitian HamiltoniarH,
one obtains

d
gt Ws #9) (D =1(Hes, ) (1) —i (s, H i) (1) = 0.

N
Sus. vz 1= Nt 11 uj<j,t>,c¢s). (212 (217

In common treatments of the time-dependent Hartree-Fock C. Orthonormal functions

theory theN-particle functionalSis further reduced to a sum The TDHF equations can be further simplified by noting
of 1-particle and 2-particle functionals by assuming ortho-5, ambiguity in the definition of the functions;. Under

normality of the functionsu;(j,t). The constraint imposed arpjtrary linear, in general time, and space dependent trans-
on the variations by the orthonormality condition is ne- formations,

glected. Here we depart from this procedure, by first calcu-

lating the variation of théN-particle functional according to ,

the exact variational principle and then applying the ortho- Ui :Zk AikUg (218
normality condition. With the help of Eq2.10, variation

with respect tau;(j,t)* yields, with the property that
N
. . detA=1, 2.1
o s 02 1= NS, a0 w0 Lo @19 (219
= i
: the Slater determinant,

Considering arbitrary independent variatiofis;(j,t)*, the , . ] )
variational principle implies, pe=det|u/(j)|=detAdet|u.(j)|=detlu(j)|=ys (2.20



PRE 61 GENERALIZED VARIATIONAL PRINCIPLE FOR THE . .. 5943

remains invariant. The transformed functions represent wheres’ refers to the two possible permutations of theiset
the same physical state as the original functions As a k. Corresponding contributions are obtained from the time
consequence, the basic TDHF equatithd4 remain form-  derivative,

invariant under these transformations. Considering time-

dependent transformations only, it is possible to choose a se i o
of orthonormal functiondJ; , satisfying E sgrim) H Vi1t 5 S Uar(50) | (10U 7y (1,D

U =5 0 17
(Ui Up(t) =5y (2.29 0SS sgr(w’>(ukﬁ
These aréN? equations for PN(N—1)/2]+N=N? real pa- o
rameters of the Hermitian matrixJ ,U;). The complex ma- )
trix A contains N2 real parameters, ‘Which are sufficient to X Uw’(k)) (DU (0,0, (2.2
satisfy N? orthonormalization conditions. The remainiig
parameters o, correspond to arbitrary unitary transforma- According to the derivation of Eq2.159), the time derivative
tions of the orthonormal system. If one of these parameters i the first line also acts on the functidn)(i,t) outside
fixed by the requirement2.19, one can still perform arbi- the bracket. In the following, however, this term has been
trary unitary transformations with determinant 1, which form separated and the remaining time derivatives are restricted to
the group SUK) with N2—1 real parameters. functions inside the brackets.

This analysis shows that the present TDHF equations ap- Finally, the contributions arising frotd () can be divided
ply in the same form both to orthonormal and nonorthonor-into two parts by writing
mal function systems. To obtain orthonormal solutidhs

from the evolution equationg.15 themselves, one there- . . .
fore has to explicitly impose the orthonormality condition ].Zk H(Z)(J’k):g’i H(Z)(k,l)+j<k’;’k#i H®(j, k).
(2.21) at each instant of time. To ensure that the orthonor- (2.26
mality condition remains valid in the course of time evolu-
tion, it is useful to demand The first part can be treated in the same manneH#s,
q 2, depending only on the coordinates of one particle in the in-
'a(Ui ,Uj)(t)=<U )(t) ( U;|t=0. tegration region. The second part yields
(222 . > . 2 Sgr(W")(UjUk,H(Z)
For orthonormal functions, the sum over permutations in JSkJZLKAT
Eq. (2.195 can easily be evaluated by noting that most XU iy U i) (DU iy (1), (2.27
bracket terms vanish. Specifically, the following identities
hold, where the summation over” denotes the six possible per-
mutations of the set,j,k.
(H Uj(j)-H U,,(j)(j)) ®=I1 6., (2233 To simplify notation, it is convenient to introduce the fol-
J#i i#i j#i lowing definitions,
. . J
(,-I;I,k UJ(J),jgk Uw(j)(]))(t):j#’k Sa(ii» F(j,t)=H®(j,t)—i rt (2.283
(2.23h
G(i,H)=(Uy(j.H),HA(,)HU (5.H)(b), (2.28D
(,ﬂk,l U0 B U”(”(”)(t) i OTO1” Fr(H)=(U(,H),F(.HDUG.O)L),  (2.289
(2.230

- . Mij k(D)= (U;(i,)U;(j,t), HAG, U, DU (L D)(L).
In other words, the only nonvanishing permutations are those (2.284
that permute only those particles excluded from the product '
states in Eq(2.23. Applying this property of the brackets to F(i,t) andGy(i,t) are time-dependent Hermitian operators
the contributions from the Hamiltoniad ), one finds, acting on the coordinates of partidleThe Hermiticity prop-

erty of these operators is expressed by
s Ui(j,t), 2, HO(k,t
> g“”)(g 00,2 HE Fr(O=F50, Mgy(0=M 0. (229

(DU (i0) It follows from the Hermiticity ofH*) andH(® and from the
(i) orthonormalization conditiof2.22. For later use we will
also define an antisymmetrized matrix

=HD, UL+ )(Uy , HD
1.HUCY 2 2 sgrt) (Ui Mij, ki = Mij i — Mij i (2.30

X1 U0
J#Ii

XU 2 o) (DU 7y (1,1), (2.24  with the properties,
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tion for electroni. The second term contains the average

Mgy =M s Mgy =Mii g » . . sec :
(2.31) interactionG;; of electroni with electronj and a correspond-

Mii k=M ki =0. ing exchangltja contributiof®;; . These terms agree with the
standard TDHF equations derived from the reduced two-
The latter follow immediately from the Hermiticity and sym- body action. In addition, Eq2.32) includes time-dependent
metry of H? and the antisymmetry of E¢2.30, respec- energy corrections for particledue to changes in the single-
tively. electron energieB;;(t) and interaction energiéd j, ;(t) of
Using Egs.(2.24, (2.29, (2.27), and (2.28 the time- the remaining particles. Note that the last term, containing
dependent Hartree-Fock equatid2sl5 can be rewritten in  the energied (1), is only present when the system con-
the form sists of more than two particles.
As shown in the Appendix, the contributions from the
F(i,t)Ui(i,t)+E_ 2 AN ) Fimr(y(D)+ Gy (i,1)] ;/Oarrri:us permutations in Eq2.32 can be rearranged in the
IR

XU oD+ > 2 sgria”)
i<kj#ik#Fi om FUi+2 G“U|_GJ|UIZE ,U,“Ul (233
] ]

><Mjk'ﬁ,,(j)ﬁn(k)(t)U,Tu(i)(i,t)=0. (232

The first term represents the one-electron Sdimger equa-  with the time-dependent coefficients

- Fi.— M i giky t Mii iy for i=j,
j%i ii gk ik, {ik} 1,12# ij.{ij} J
mii(t)= (2.34

Fii+ > Mik fiky for i#j.
K

The standard TDHF equations correspond to the case where0 with respect to variations of the functiohy one im-
wij=0. In Sec. IlI, it will be shown that this form actually mediately obtains the TDHF equations in the form

can be obtained by a unitary transformation of the spin or-

bitals with a time-dependent phase correction to the Slater

determinant. In the next section an alternative derivation of FUi”L; ijUi_GjiUizg wmiilj- (2.37
Eq. (2.33 will be given, showing that the coefficients; (t)

are the Lagrange multipliers of a variational principle with  Taking now the projection on a functiot),, the
orthonormality constraints. Lagrange multipliers can be explicitly expressed as,

D. Variational principle with orthonormality constraints = Fyit 2 Mkj,{ij}- (2.39
Since the spin orbitals can always be chosen orthonormal, ]

it is sufficient to perform variations within the subset of . . .
functions satisfying the orthonormality constraiat2). Us-  1© eliminate the Lagrange multipliers, one has to impose

ing the method of Lagrange multipliers, this can be achieve&onditions on these matrix elements from the completeﬂ varia-
by a variation of the modified action tional principle. From the wave functiofr and the Schro

dinger operatoi’, one can only form a single scalar product
that contains the matrix elements of E3.39),

~S:S_f dtiEj {(Ui, Up) = u;i(t), (239
<w,£w>(t>=(ws,£¢s>(t>=2i Fn(t>+i2<j Mij ij; (1) =0.
(2.39

S:f dt>, Fi+ > Mij 1ijy - (2.3¢  This identity can be viewed as a condition on the time-
[ i< ' dependent single-particle energies

with

The reduced actiof.36) is obtained by using Eq2.21) in 0

Eqg.(2.12. Lagrange multipliers;;(t) have been introduced Ei=| Uil ﬁui () (2.40
for each constraint at each timeSince U;,U;)(t) is Her-

mitian, the matrix of the Lagrange multipliers has the samejefined by the TDHF orbitals. Using Eq2.283 in Eq.
property,Mij(t)z,uJ*i(t). From the variational principléS  (2.39 it follows that the sum
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d
2 E=2 (U HOUDO+ 2 Mg = (s Hibo) () 5t Tim(=20 (O Tjm(0). (33

2.4
(240 Suppose that the Lagrange multipliers have already been re-
has to be equal to the expectation value of the energy in thmoved at timet,,. In a subsequent infinitesimal time interval
guantum statey,. At the solution of Eq(3.3) is given by the unitary operator
This relationship determines the trace of the masixas,

T(At)=e #(tAL, (3.9

Tr{,u}=2i F“+% Mii'{ii}:;k Mik iy - (242 By repeated application of this procedure at subsequent

times t,=nAt, n=1,2,3..., one canobtain the unitary

The remaining\|2_l parameters from the Hermitian matrix transformation for a finite time interval in the form,

wij can be arbitrarily chosen. In particular, the full set of

TDHF equations(2.33 imposes no conditions on the off- ()AL

diagonal elements, as can be seen by comparing them with T(I)ZH e 3.9

the identical expressions in E(R.34).
The determinant of this transformation can be obtained by

IIl. DISCUSSION OF RESULTS noting that

In the present work we have considered the variational detB=e THA} 3.6
principle for the TDHF equations for a Slater determinant. It N ’
has been shown that the variation of the compNiBody ., any unitary operatoB=e A [10]. This relationship

action leads to additional time-dependent parameters in thgqgs in the basis of eigenstates of the Hermitian operator
standard TDHF equations for orthonormal spin orbitals.qnq it follows generally from the invariance of the trace and

These parameters agree with the Lagrange multipliers in ge determinant with respect to unitary transformations. Us-
variational principle with orthonormality constraints on the ing Eq. (3.6 yields

spin orbitals. We now further discuss the significance of the
Lagrange multipliers in the TDHF equations.
The Lagrange multipliergs;; form a Hermitian matrix detT(t)=]T exd —i Tr{u(t,)}At,]
with N? independent parameters. Since a unitary transforma- n
tion has just the same number of parameters, all Lagrange
multipliers can be removed at each time by a time-dependent =exr{ i J' dtTr{,u(t)}}
unitary transformation, which will lead to the standard
TDHF equations. We now demonstrate in detail the exis-
tence of such a unitary transformation and calculate its de- :exp{ —if dt> Mjk’{jk}} (3.7)
terminant, which is a complex number with unit magnitude. <k
This determinant is required to obtain the correspondin
transformation of the Slater determinant.
Consider a new set of spin-orbitaly,, related to the old
setU; by a time-dependent unitary transformation

qn the last step, the trace of the matyix;(t) has been ex-
pressed by the average interaction energy between all pairs
of particles according to EQ.2.42. Eliminating the
Lagrange multipliers by this set of basis functions, the TDHF
equations assume their standard form

Ur’n=2i TimUi , Ui:% TmiUn. 3.9
J
H r__ 1 ! ! ! ! !
Tim=(U;,Up)(1), Thi= (UL UD()=TF,. The matrix element§;; are defined by Eq2.28 in terms

of the functionsJ;/ . The Slater determinant; for the physi-
The corresponding transformation of the Lagrange multipli-cal wave function can be obtained from the Slater determi-

ers(2.39 is given by nant, of the solutionU; by the unitary transformation
=S T T The T 3.2 L e /
Mnam= = niktij ! jm ni ijla jm - (3.2) IJISZEI/ISZGX If dtz Mjk,{jk} s . (3.9
<k

If the transformation is time independent, the Lagrange mulThis phase factor has to be included in the time-dependent
tipliers transform as a tensor. However, for time-dependengolution of the wave function after the standard TDHF equa-
transformations an additional term arises from the timetions have been solved.

derivative in the operatof =H®—i(a/4dt). Requiring that The appearance of an additional phase can be simply un-
the transformed Lagrange multipliegs, ., vanish,T;(t) has  derstood by noting that the phase slit9) corresponds to

to satisfy the evolution equation, an energy difference
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’ ros J ’ 0 _ (1)
E'—E={ l.i g | (0= | vl 05| (D=2 Mg Nij=(U; H uj)+2k Mik gk - (3.16

<k
(3.10

The matrix\;; represents the matrix of Lagrange multipliers
between the energies’ and E calculated withy, and i, in the time-independent theory introduced by Koopmlais
respectively. The physical energy of the system is defined byn the work of Slater, these parameters have been defined
the expectation value of the Hamiltonian with the wave func-with the opposite sigiig].
tion ¢, yielding In the time-independent theory it is always possible to

choose a set of functions that diagonalize,

. d B
E:(‘/,SalEws)(t)_(lﬁSyHl//s)(t) Z )\JIUJ/:EI!UI! (317)
J

= - H@Oy. N
Ei: (Ui.H U')(t)+i§<:j Mij iy - G1D  gpe specific set of functions)] that diagonalizes\;; has

been called a characteristic systgm. The unitary transfor-
On the other hand, the enery can be calculated as a sum Mation introduced above in the time-dependent framework is
of single-electron energies, a generalization of this diagonalization procedure. In the
time-independent case, the condition for settipg=\j;
—E; 6;=0 agrees with Eq(3.17).
u’ iiU-’)(t) (3.12 The condition(2.42) on the trace of the Lagrange multi-
at ! ’ pliers assumes the time-independent form

NN
E=@wﬁ%%%2

which are given by the solution of the TDHF equati¢B)

as, TF{M}=TF{>\}—Z Eiin Ei'—Ei=E’—E=iE<]_ Mij ij} »
(3.18
H (9 ! ! !
E; E<Ui A= Ui )(t):(Ui HOU; )(t)‘L; Mij ij - where the trace ok has been evaluated without restriction

(3.13 by the set of functiondJ; . The discrepancy between the
energiesE’ and E is well known in the time-independent
Inserting Eq.(3.13 into Eq.(3.12), it follows that the inter- theory. In the pr_esent work we draw attent_ion to the fact that
action energy is counted twice B . The double counting of ON€ has to take into account a corresponding phase change of
the interaction energy in the standard TDHF model is corthe wave function, which is particularly relevant in the time-
rected by the phase factor to the wave function in ).  dependent context.

It may also be of interest to compare the present results Itis finally noted that the energidg' in the standard form
with those of the time-independent Hartree-Fock theory for #f the HF equations have a physical meaning that is given by
single Slater determinant. In the time-independent frameKoopmans'’ theoreri7]. It states that the energy required to
work, the role of Lagrange multipliers has been discussed bjemove the electronfrom the system without changing the
Koopmans[7] and an extended discussion of the time-remaining orbitals is equal te-E/. The energies of the
independent theory can be found in the book of SIg8r  N-electron system and thé&l(- 1)-electron system are physi-
The time-independent HF equations can be obtained fromally well defined. It can easily be shown that their differ-
the present TDHF equations by considering a time-ence is given by expressiof8.13, which represents the
independent Hamiltonian and assuming stationary states witsingle-electron energy of electranand the interaction en-
the time dependence ergy of electroni with all the other particles. Koopmans’

theorem remains valid in the time-dependent case, if the en-
ergiesk/ (t) are defined by Eq(3.13.

9
IEUi:EiUi' (31‘9
IV. CONCLUSION
With this substitution, one obtains from E®.37) the HF The TDHF theory for a Slater determinant of an
equations N-electron Coulomb system has been reviewed in the context

of a variational principle for thé\-body action. It is found
that the Slater determinant calculated by standard TDHF
HOU+ D G U,—GU =i iUiJrZ wilU equations has to be corrected by a time-dependent phase fac-
7 = at T o tor. This factor properly accounts for the mean interaction
energy of the system, which otherwise would be calculated
:2 iU, (3.19 twice by summing over single-particle energies. In principle,
] the phase correction to the wave function may be observable,
e.g., by measurements of the polarizability of an atom in a
where superposition of quantum states.
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Together with the contributions from the identical permuta-

tion in the sum overr’, there follow the diagonal elements

wii (t) as given by Eq(2.33. The sum over the remaining
The coupling coefficientg;(t) in Eq. (2.33 can be ob- two terms in Eq(Al) can be written as,

tained in the following way. Using the definitidi2.30, the

sum over the permutations’ in Eq.(2.32 can be written as, x J_Z,i » Mk kiyUj+ Mi i Vi

APPENDIX: COUPLING COEFFICIENTS

= 2 MU+ 2 MU
> sg(m" )M i iy iU iy (i) P<kiFk k<pfFikei

"
m

- MU= =S Moy U A3
=Mj Ui+ Mjc g Ui+ MU (AL i%&i fhefhi}™ % kil ™ (A3)

_ _ _ _ Together with the exchange contributions from the sum over
Noting the properties2.31), the restricted sum of the first #’, one obtains the off-diagonal elemenpts(t), i #] of Eq.

term overj andk can be evaluated as, (2.33.
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